Funciones lineales y afinesOnline version Observar el video y responder paulatinamente las preguntas de acuerdo a las características de las funciones lineales y afines a través de ejemplos y gráficas. by Lisbeth Males 1 ¿Cuál es la condición que tiene la constante o la pendiente de la función? Selecciona una o varias respuestas a Tiene que ser igual o mayor a cero. b Puede ser todos los números reales diferente de cero. c Puede ser todos los números reales diferente de los negativos. 2 ¿Por donde pasa la función lineal? Selecciona una o varias respuestas a Por cualquier punto de y. b Por el origen de las coordenadas, c Por cualquier punto de x. 3 ¿Cuándo es una función lineal creciente? Selecciona una o varias respuestas a Cuando m es mayor a cero. b Cuando m es diferente de cero. c Cuando m es menor a cero. 4 Complete: En la ecuación de la función afín m y n son: Selecciona una o varias respuestas a Constantes b Números c Letras de la ecuación 5 ¿Cuál es la intersección del eje y de la primera función del ejemplo? Selecciona una o varias respuestas a 4 b 10 c 6 d 5 6 ¿Cómo se representa la intersección en el eje Y? Selecciona una o varias respuestas a m b n c depende de la función 7 ¿A qué valor igualamos la función afin para hallar la intersección en el eje x? Selecciona una o varias respuestas a 0 b Al valor de m c 1 d Depende de la función 8 ¿Cuál es la diferencia principal entre función lineal y afín? a La primera pasa la recta por el origen y la segunda es decreciente. b La primera pasa por cualquier punto del planto y la segunda pasa por el origen. c La primera pasa por el origen y la segunda no pasa por el origen determinado por m. d La primera pasa por el origen y la segunda no pasa por el origen determinado por n.