Icon New game New game

Mastering SQL Window Functions

Fill in the Blanks

Drills to master window functions in SQL

Download the paper version to play

0 times made

Created by

United States

Top 10 results

There are still no results for this game. Be the first to stay in the ranking! to identify yourself.
Make your own free game from our game creator
Compete against your friends to see who gets the best score in this game

Top Games

  1. time
    score
  1. time
    score
time
score
time
score
 
game-icon

Fill in the Blanks

Mastering SQL Window FunctionsOnline version

Drills to master window functions in SQL

by Good Sam
1

amount sale_date SELECT sales OVER AS BY amount FROM running_total sale_date SUM ORDER

Problem 1 : Calculate Running Total
Question : You have a table sales ( sale_date DATE , amount DECIMAL ) . Write a SQL query to calculate a running total of amount , ordered by sale_date .

Solution :

, ,
( ) ( )
;

2

AND PRECEDING UNBOUNDED moving_avg sales amount sale_date sale_date sales sales BETWEEN sale_date BETWEEN SELECT PRECEDING amount FROM SUM sale_date CURRENT amount AVG OVER ORDER as sale_date ORDER SELECT OVER FOLLOWING OVER moving_avg AVG ROW SELECT BY AND ROW FROM amount as AND ROW ROWS AND sales CURRENT amount ROWS ROWS BY BETWEEN BY as BETWEEN BY AVG sale_date BETWEEN current_avg ROWS CURRENT FROM sum_to_end ROW 3 FOLLOWING PRECEDING amount sale_date FROM sales running_total CURRENT ORDER ORDER UNBOUNDED ROW amount as FROM OVER amount ROWS BY ORDER sale_date 6 3 OVER SUM AND sale_date CURRENT SELECT as amount

Problem 2 : Calculate Moving Average
Question : Calculate a 7 - day moving average of sales from the sales table .

Solution :

, ,
( ) ( )
;

Example 2 : Fixed Range with Both PRECEDING and FOLLOWING

, ,
( ) ( )
;

This calculates the average amount using a window that includes three rows before , the current row , and three rows after the current row .

Example 3 : From Start of Data to Current Row
, ,
( ) ( )
;

This query computes a running total starting from the first row in the partition or result set up to the current row .

Example 4 : Current Row to End of Data
SELECT sale_date , amount ,
( ) ( )
;

This sums the amount from the current row to the last row of the partition or result set .

Example 5 : Current Row Only
, ,
( ) ( )
;

This calculates the average of just the current row's amount , which effectively returns the amount itself .

3

total_purchases total_purchases name AS BY DESC rank SELECT FROM RANK id customers ORDER OVER

Problem 3 : Rank Customers by Sales

Question : From a table customers ( id INT , name VARCHAR , total_purchases DECIMAL ) , rank customers based on their total_purchases in descending order .

Solution :

, , ,
( ) ( )
;
Explanation : RANK ( ) assigns a unique rank to each row , with gaps in the ranking for ties , based on the total_purchases in descending order .

4

SELECT sale_date row_num sale_date ORDER ROW_NUMBER() OVER AS sales BY FROM amount

Problem 4 : Row Numbering

Question : Assign a unique row number to each sale in the sales table ordered by sale_date .

Solution :

, ,
( )
;

Explanation : ROW_NUMBER ( ) generates a unique number for each row , starting at 1 , based on the ordering of sale_date .

5

FROM customer_id MIN customer_id SELECT AS purchase_date BY PARTITION OVER first_purchase purchases

Problem 5 : Find the First Purchase Date for Each Customer
Question : Given a table purchases ( customer_id INT , purchase_date DATE ) , write a SQL query to find the first purchase date for each customer .

Solution :

, ( ) ( )
;

Explanation : MIN ( ) window function is used here , partitioned by customer_id so that the minimum purchase date is calculated for each customer separately .

6

SELECT amount 1 amount BY sale_date sales_data AS BY change_in_amount 1 amount sale_date FROM AS previous_day_amount LAG OVER amount ORDER sale_date ORDER OVER LAG

The LAG function is very useful in scenarios where you need to compare successive entries or calculate differences between them . For example , calculating day - over - day sales changes :


SELECT sale_date ,
amount ,
LAG ( amount , 1 ) OVER ( ORDER BY sale_date ) AS previous_day_amount ,
amount - LAG ( amount , 1 ) OVER ( ORDER BY sale_date ) AS change_in_amount
FROM sales_data ;



,
,
( , ) ( ) ,
- ( , ) ( )
;

In this query , the change_in_amount field computes the difference in sales between consecutive days . If the LAG function references a row that doesn't exist ( e . g . , the first row in the dataset ) , it will return NULL unless a default value is specified .


The LAG window function in SQL is used to access data from a previous row in the same result set without the need for a self - join . It's a part of the SQL window functions that provide the ability to perform calculations across rows that are related to the current row . LAG is particularly useful for comparisons between records in ordered data .

How LAG Works :
LAG takes up to three arguments :

Expression : The column or expression you want to retrieve from a preceding row .
Offset : An optional integer specifying how many rows back from the current row the function should look . If not specified , the default is 1 , meaning the immediate previous row .
Default : An optional argument that provides a default value to return if the LAG function attempts to go beyond the first row of the dataset .
Syntax :
LAG ( expression , offset , default ) OVER ( [ PARTITION BY partition_expression ] ORDER BY sort_expression )


educaplay suscripción