Icon New game New game

Mastering SQL Window Functions

Fill in the Blanks

Drills to master window functions in SQL

Download the paper version to play

0 times made

Created by

United States

Top 10 results

There are still no results for this game. Be the first to stay in the ranking! to identify yourself.
Make your own free game from our game creator
Compete against your friends to see who gets the best score in this game

Top Games

  1. time
    score
  1. time
    score
time
score
time
score
 
game-icon

Fill in the Blanks

Mastering SQL Window FunctionsOnline version

Drills to master window functions in SQL

by Good Sam
1

SUM SELECT OVER FROM amount running_total sale_date ORDER AS amount sale_date sales BY

Problem 1 : Calculate Running Total
Question : You have a table sales ( sale_date DATE , amount DECIMAL ) . Write a SQL query to calculate a running total of amount , ordered by sale_date .

Solution :

, ,
( ) ( )
;

2

sale_date SELECT 3 UNBOUNDED sale_date AVG OVER CURRENT BY running_total OVER sales as ROW sales ROWS sale_date ROW BY FROM ROW as SELECT ROW amount current_avg sales FROM sale_date SUM moving_avg BY as ORDER AVG amount BETWEEN amount CURRENT FROM BY as amount sum_to_end CURRENT OVER sales CURRENT 3 BETWEEN FROM BETWEEN moving_avg amount AND ORDER SELECT ORDER BY AND OVER SELECT AND AVG FOLLOWING AND ROWS AND SUM amount ROWS ORDER as FOLLOWING ROWS PRECEDING ROWS PRECEDING 6 OVER amount BETWEEN ORDER sale_date amount CURRENT ROW PRECEDING FROM sale_date sale_date amount sale_date BETWEEN UNBOUNDED sales sale_date

Problem 2 : Calculate Moving Average
Question : Calculate a 7 - day moving average of sales from the sales table .

Solution :

, ,
( ) ( )
;

Example 2 : Fixed Range with Both PRECEDING and FOLLOWING

, ,
( ) ( )
;

This calculates the average amount using a window that includes three rows before , the current row , and three rows after the current row .

Example 3 : From Start of Data to Current Row
, ,
( ) ( )
;

This query computes a running total starting from the first row in the partition or result set up to the current row .

Example 4 : Current Row to End of Data
SELECT sale_date , amount ,
( ) ( )
;

This sums the amount from the current row to the last row of the partition or result set .

Example 5 : Current Row Only
, ,
( ) ( )
;

This calculates the average of just the current row's amount , which effectively returns the amount itself .

3

FROM customers RANK total_purchases SELECT ORDER total_purchases AS id rank name DESC OVER BY

Problem 3 : Rank Customers by Sales

Question : From a table customers ( id INT , name VARCHAR , total_purchases DECIMAL ) , rank customers based on their total_purchases in descending order .

Solution :

, , ,
( ) ( )
;
Explanation : RANK ( ) assigns a unique rank to each row , with gaps in the ranking for ties , based on the total_purchases in descending order .

4

row_num BY amount AS sale_date SELECT sale_date FROM sales ORDER ROW_NUMBER() OVER

Problem 4 : Row Numbering

Question : Assign a unique row number to each sale in the sales table ordered by sale_date .

Solution :

, ,
( )
;

Explanation : ROW_NUMBER ( ) generates a unique number for each row , starting at 1 , based on the ordering of sale_date .

5

OVER BY customer_id PARTITION customer_id first_purchase AS SELECT FROM purchase_date purchases MIN

Problem 5 : Find the First Purchase Date for Each Customer
Question : Given a table purchases ( customer_id INT , purchase_date DATE ) , write a SQL query to find the first purchase date for each customer .

Solution :

, ( ) ( )
;

Explanation : MIN ( ) window function is used here , partitioned by customer_id so that the minimum purchase date is calculated for each customer separately .

6

amount change_in_amount LAG sale_date ORDER amount amount LAG 1 AS SELECT previous_day_amount ORDER sales_data OVER OVER AS BY amount FROM sale_date BY 1 sale_date

The LAG function is very useful in scenarios where you need to compare successive entries or calculate differences between them . For example , calculating day - over - day sales changes :


SELECT sale_date ,
amount ,
LAG ( amount , 1 ) OVER ( ORDER BY sale_date ) AS previous_day_amount ,
amount - LAG ( amount , 1 ) OVER ( ORDER BY sale_date ) AS change_in_amount
FROM sales_data ;



,
,
( , ) ( ) ,
- ( , ) ( )
;

In this query , the change_in_amount field computes the difference in sales between consecutive days . If the LAG function references a row that doesn't exist ( e . g . , the first row in the dataset ) , it will return NULL unless a default value is specified .


The LAG window function in SQL is used to access data from a previous row in the same result set without the need for a self - join . It's a part of the SQL window functions that provide the ability to perform calculations across rows that are related to the current row . LAG is particularly useful for comparisons between records in ordered data .

How LAG Works :
LAG takes up to three arguments :

Expression : The column or expression you want to retrieve from a preceding row .
Offset : An optional integer specifying how many rows back from the current row the function should look . If not specified , the default is 1 , meaning the immediate previous row .
Default : An optional argument that provides a default value to return if the LAG function attempts to go beyond the first row of the dataset .
Syntax :
LAG ( expression , offset , default ) OVER ( [ PARTITION BY partition_expression ] ORDER BY sort_expression )