Matching Pairs Regresión lineal multipleOnline version Objeto de aprendizaje para evaluar: -Que entiende el papel del análisis de regresión dentro de los diseños experimentales. -Comprende como aplicar las pruebas de hipótesis en la regresión lineal y evaluar la calidad de un modelo. -Diferencía entre regresión lineal simple y múltiple, y aplicar cada una al caso apropiado. Dela fuente: CAPÍTULO 11. Análisis de regresión Gutiérrez, P. H., & Vara, S. R. D. L. (2012). Análisis y diseño de experimentos (3a. ed.). Retrieved from http://ebookcentral.proquest.com Página 299 by Fausto Noé Jiménez 1 Formulación para la prueba de significancia del modelo de regresión lineal múltiple. 2 Es la diferencia entre lo observado y lo estimado o predicho. Sirven para analizar el error de ajuste de un modelo. 3 Modelo de regresión lineal simple 4 Implica que por lo menos un término en el modelo contribuye de manera significativa a explicar Y. 5 Es la suma de los residuos al cuadrado, y se utiliza para estimar la varianza del error de ajuste de un modelo. 6 Procedimiento para estimar los parámetros de un modelo de regresión que minimiza los errores de ajuste del modelo. 7 Explica en forma matemática el comportamiento de una variable de respuesta en función de una o más variables independientes. 8 Razones por las que las variables X y Y aparecen relacionadas de manera significativa. 9 Modelo de regresión lineal multiple 10 Formulación para la suma total de cuadrados. 11 Estructura de los datos para la regresión lineal múltiple. 12 Significa que ningún término o variable en el modelo tiene una contribución significativa al explicar la variable de respuesta. 13 Razones por las que las variables X y Y aparecen relacionadas de manera significativa. Aceptar H0 Análisis de Regresión Método de mínimos cuadrados. Resíduos Rechazar H0. Suma de cuadrados del error