Memory Game Factorización Online version En el siguiente memorama tendrás que identificar los diferentes tipos de factorización, estos pueden ser ejemplos o características que tienen las factorizaciones. by Jonathan Romero Martínez Factorización de la forma x^2+bx+c Tienen un termino positivo elevado al cuadrado y con coeficiente 1 (coeficiente). Posee un termino que tiene la misma letra que el termino anterior pero elevada a 1 (puede ser negativo o positivo). Tienen un termino independiente de la letra que aparece en los otros dos (+ o -). Características de una suma y diferencia de cubos Características del factor común Características de la forma ax^2+bx+c Es el factor que está presente en cada término del polinomio. En el caso de los coeficientes numéricos el factor común es el mayor divisor posible entre ellos y el factor común literal está conformado por el o los elementos de la parte literal presentes en todos los términos con el menor exponente. Características de la forma x^2+bx+c Diferencia de cubos Características del trinomio cuadrado perfecto Si los términos de un polinomio pueden reunirse en grupos de términos con un factor común diferente en cada grupo. Factor común 10ax+35bx-6ay-21by Agrupación de términos Características de diferencia de cuadrados Es el binomio conformado por dos términos a los que se les puede sacar raíz cuadrada exacta. El coeficiente del primer término es diferente de 1. La variable del segundo término es la misma que la del primer término pero con exponente a la mitad. El tercer término es independiente de la letra que aparece en el primer y segundo términos del trinomio. Son dos términos, separados por el signo ( + ) cuando sea suma, y por el signo ( - ) cuando sea una diferencia. Los coeficientes deberán tener raíz cúbica exacta. Los exponentes deberán ser divisibles entre 3. Factorización de la forma ax^2+bx+c Trinomio cuadrado perfecto Diferencia de cuadrados Características de agrupación de términos. Suma de cubos Es una expresión algebraica de tres términos en el cual, dos de ellos son cuadrados perfectos y el otro término es el doble producto de las bases de esos cuadrados.